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WmICAL IENEISIIGATION Ol? REDUCTION I N  T[TRBuLENT 

S K I N  F R I C T I O N  ON A FLAT PLATE By MEANS OF 

AIR INJECTION THROUGH DISCRETE SrXrrS 

By K. R. C.zamecki 
Langley Research Center 

An analyt ical  investigation based on a number of simplifying assumptions 
has been m a d e  of t he  poss ib i l i t i e s  of reduction i n  compressible turbulent skin 
f r i c t i o n  on a f l a t  p l a t e  by means of low-energy air in jec t ion  through d iscre te  
s lo t s .  The analysis i s  based on the  combination of the  momentum losses  i n  the  
boundary-layer and inject ion-air  flows, and employs the S m e r  and Short ref
erence temperature method f o r  estimating boundary-layer skin f r i c t ion .  

The results of t he  analysis indicate t h a t  the  greatest  theore t ica l  reduc
t ions  i n  skin f r i c t i o n  occurred at the  lowest inject ion-air  pressure recovery 
fac tors  defined as t h e  f rac t ion  of free-stream dynamic pressure energy s t i l l  
preserved i n  the  in jec t ion  engine o r  bleed a i r  a f t e r  entrance losses ,  and thus 
a t  the  lowest a i r  inject ion ve loc i t ies .  For the optimum se t  of conditions con
sidered i n  the  analysis, the  maximum reduction i n  skin f r i c t i o n  at  a Mach num
ber of 3 w a s  about 24 percent a t  a recovery fac tor  of 0.005. For an an t ic i 
pated pressure recovery rmge of 0.25 t o  0.50, the  calculated reduction i n  skin 
f r i c t i o n  with the  remaining conditions being held constant w a s  on t he  order of 
10 t o  5 percent. I n  general, increases i n  free-stream Mach number, increases 
i n  free-stream Reynolds number per foot, in te rna l  heating of the  bleed air, and 
movement of t he  inject ion slot downstream from the  leading edge led t o  decreases 
i n  the  available reductions i n  skin f r ic t ion ;  whereas, i n t e rna l  cooling of the  
bleed air, increases i n  chord length a t  constant inject ion m a s s  flow, and 
increases i n  inject ion-air  m a s s  flow resul ted i n  increases i n  t h e  mount of 
reduction i n  skin f r i c t i o n  tha t  i s  possible. Pressure losses  i n  inject ion-air  
ducting rapidly negated the  favorable e f f ec t s  of air  inject ion.  

INTRODUCTION 

The successful development of a long-range supersonic t ransport  airplane 
is c r i t i c a l l y  dependent upon the  attainment of reasonably high l i f t -d rag  ra t ios .  
Inasmuch as boundary-layer skin f r i c t i o n  const i tutes  a substant ia l  portion of 
t he  overal l  drag of an airplane of e f f i c i en t  design, one method of obtaining 
the  desired r a t io s  i s  t o  reduce the  skin f r i c t i o n  of t he  turbulent boundary 
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layer, which covers most of the  airplane surfaces, t o  values below those nor
mally found on a smooth surface. "his reduction can be accomplished by the 
inject ion of low-energy air in to  the  boundary layer. Engine bleed air or spent 
cabin air could serve as a source of this  low-energy air. 

Two possible methods of injecting a i r  in to  the  boundary layer are  generally 
being considered. I n  the first method, air  i s  injected continuously over the  
complete area of in te res t  through a porous surface. Reduction i n  skin f r i c t ion  
i n  t h i s  approach is  achieved primarily by an a l te ra t ion  or distor t ion of the 
boundary-layer prof i le  such tha t  the  velocity gradient perpendicular t o  the 
surface, which is  a direct  measure of the loca l  skin fr ic t ion,  is  reduced. A 
further, but s m a l l e r ,  decrease i n  skin f r i c t ion  results from the  forced thick
ening of the boundary layer, inasmuch as thicker boundary layers of the  same 
basic prof i le  a lso cause a decrease i n  the  absolute boundary-layer velocity 
gradients. In  the second method, low-energy air is  injected in to  the boundary 
layer  by means of discrete  s lots ,  and reduction i n  &in f r i c t ion  is  realized 
primarily from the  forced thickening of t he  boundary layer. T h i s  forced thick
ening is  usually in i t i a t ed  close t o  the  origin of the  turbulent boundary layer. 

The method of injection through porous surfaces i s  aerodynamically more 
e f f ic ien t  ( i f  the pressure losses through the  porous surface are excluded) and 
has been studied i n  considerable d e t a i l  (see refs. 1t o  5,  f o r  example). Haw-
ever, the  method poses prodigious design problems f o r  adaptation t o  pract ical  
use because porous skins tend t o  be weak and b r i t t l e ,  have high resistance t o  
air flows, and clog very easily, and because of the d i f f icu l ty  of attaining 
access t o  large areas of surface with the a i r  OB the usual airplane. The 
discrete-slot  technique, on the  other hand, although aerodynamically less effi
cient, has no clogging problem and is  more readily amenable t o  pract ical  design. 
L i t t l e  has been done, however, t o  investigate the  potential  gains from the lat
t e r  type of approach. The present analyt ical  investigation w a s  undertaken t o  
f u l f i l l  the  need f o r  information i n  t h i s  area and t o  serve as a guide f o r  
experimental research. 

The basic objectives of this  investigation were t o  determine the magnitudes 
of skin-friction reduction tha t  might be possible with low-energy a i r  injection 
by discrete  s l o t s  and t o  re la te  the reductions t o  s l o t  location, indection-air 
mass flow, engine bleed a i r  pressure recovery, chord length, and heat t ransfer  
for a range of Mach numbers and Reynolds numbers. Effects of ducting pressure 
losfies on the  efficiency of t h i s  method of skin-friction reduction were also 
studied. 

The analysis i s  based on the  combination of the momentum losses i n  the  
boundary-layer and injection-air m a s s  flows, and employs the  Sommer and Short 
reference temperature method f o r  estimating boundary-layer skin f r ic t ion .  (See 
ref. 6.) 
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SYMBOLS 


Dimensional: 

a 

C 

cP 

1 

2 s  

2 s  ' 

m 

me 

m, 


P 

9 

R 

Rft 


S 


S 

8 '  

ss' 

B ' t '  

T 


T' 


s p e d  of sound 


chord length of basic  f la t  p l a t e  


spec i f ic  heat of air  at  constant pressure 


leading edge 

distance from leading edge t o  s l o t  

f i c t i t i o u s  distance from leading edge t o  s l o t  after inclusion of 
e f f ec t s  of air  in jec t ion  

m a s s  flow of a i r  

m a s s  flow of air  injected through s l o t  per u n i t  span, PeUeW 

reference mass flow of a i r ,  pm&c 

pressure ( s t a t i c  pressure when used without subscript t )  

dynamic pressure, 	z pM2
2 

perfect gas constant 

~ m U mfree-stream Reynolds number per foot, -
IJm 

Sutherland gas constant 

s l o t  location 

effect ive s l o t  location 

f i c t i t i o u s  increase i n  length of boundary layer  or displacement 
distance resul t ing from air  inject ion 

f i c t i t i o u s  distance from s l o t  t o  trailing edge of f la t  p l a t e  a f t e r  
inclusion of e f f ec t s  of a i r  in jec t ion  

absolute temperature ( s t a t i c  temperature when used without 
subscript t)  

reference temperature (e= 1+ 0.035%2 + 0 . 4 5 k  - I)) 
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t t r a i l i n g  edge 

t '  ef fec t ive  t r a i l i n g  edge 

U veloci ty  pa ra l l e l  t o  surface i n  stream direct ion 

W width of inject ion-air  s l o t  

X longitudinal distance along surface from leading edge 

7 r a t i o  of spec i f ic  heat at  constant pressure t o  spec i f ic  heat a t  
constant volume 

6 t o t a l  boundary- layer  t h i  ckness 

6* boundary-layer displacement thickness, s,"(. - &)Q 
e boundary-layer momentum thickness, 

P absolute viscosi ty  of air  


P '  absolute viscosi ty  of a i r  at  reference temperature; 


P m a s s  density of air  


Dimensionless parameters: 


A Reynolds number t r ans fe r  parameter, 1 


CD t o t a l  drag coefficient,  
Fr ic t ion  drag + Drag due t o  ducgi-w pressure losses  

&ox 


CF average skin-fr ic t ion coefficient,  Fr ic t ion  drgg 
%X 

-E D  reduction i n  t o t a l  drag parameter (defined by eq. (47))  
Q 2 t  

-E F  reduction i n  skin-fr ic t ion parameter (defined by eq. (11)) 
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PoOUmX 

I 


H boundarjr-layer shape parameter, 0 

-2 s  slot-location r a t i o
C 

M Mach number, u/a, o r  -U m 
me- mass-flow r a t i o  
m, 

m* m a s s - f low paramet er, me/%
WI. 

%, Reynolds number, clm 

r pressure recovery factor ,  	 %,e - Po0 

P t p  - pm 

-ss ’ displacement distance parameter
C 

T t ,  e inject ion-air  temperature r a t i o  
T t , m  

Ue-	 inject ion-air  o r  ex i t  velocity r a t i o  
u, 

. 
w slot-width t o  chord r a t i o
C 

m s s t  incremental boundary-layer momentum thickness r a t i o
C 

a s s  

0* Incremental boundary- layer  momentum thickness parameter, C 

w/c
%SIor  -

W 

Subscripts : 

b l  boundary layer  

d including ef fec ts  of inject ion air-ducting pressure losses 

e located at s l o t  ex i t  

e,d located a t  slot ex i t  but including e f f ec t s  of ducting pressure losses  
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IS 

2 s  ' 

I t  

I t  ' 

Me 

max 

S 


S' 


ss ' 

s 't ' 


t 

t , e  

t,O0 

W 

* 
e m a x  

00 

35 


from leading edge t o  s l o t  location 

from leading edge t o  f i c t i t i o u s  s l o t  locat ion a f t e r  inclusion of 
e f fec ts  of air  inject ion 

from leading t o  t r a i l i n g  edge of basic f la t  p l a t e  

from leading edge t o  f i c t i t i o u s  t r a i l i n g  edge of f la t  p l a t e  after 
inclusion of e f fec ts  of air  in jec t ion  

Mach number at ex i t  of s l o t  

maximum 

located ju s t  ahead of s l o t  

located ju s t  behind s l o t  

increment due t o  inject ion of a i r  

from s l o t  t o  f i c t i t i o u s  t r a i l i n g  edge of f la t  p l a t e  a f t e r  inclusion 
of e f fec ts  of air  inject ion 

stagnation 

stagnation i n  inject ion-air  flow 

stagnation i n  free-stream flow 

w a l l  

co>ditions f o r  which Q* i s  maximum 

f r e e  stream 

chord of 35 f e e t  

A bar over a symbol denotes quant i t ies  t o  be computed w i t h  the aid of a 
modified w a l l  temperature. 

Equation f o r  Reduction of Skin Frict ion 

If low-energy air  i s  injected in to  a turbulent boundary layer, it w i l l  mix 
with the  boundary layer  and increase the boundary-layer thickness. If the 
boundary-layer p ro f i l e  i s  not dis tor ted,  the increased thickness w i l l  reduce the 
veloci ty  gradients through the  boundary layer  perpendicular t o  the surface and, 
because the magnitude of t he  velocity gradient a t  the surface i s  a d i rec t  indi
cator of the l o c a l  skin f r i c t ion ,  the  boundary-layer skin f r i c t i o n  w i l l  be 
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reduced. If the air  inject ion is  suf f ic ien t ly  close t o  the  wing or body leading 
edge and i s  achieved without t he  creation of undue flow disturbances, then rela
t i v e l y  large segments of t he  airplane surfaces can be sheathed i n  t h i s  thick
ened boundary-layer flow and s ignif icant  reductions i n  skin-fr ic t ion drag may 
be realized. 

In  order t o  simplify the analysis t he  following assumptions are made: 

(1)The flow i s  two dimensional 

(2)  The boundary layer  i s  on a sharp-edged f la t  plate,  and the pressure 
gradient i n  t h e  flow direction'  i s  zero 

( 3 )  Turbulent boundary-layer flow originates  at  the  p l a t e  leading edge 

(4)  Air i s  injected in to  the  boundary layer  through a d iscre te  s l o t  having 
a width suf f ic ien t ly  narrow re l a t ive  t o  the f l a t -p l a t e  chord so t h a t  
t he  loss  i n  surface area represented by the  s l o t  can be neglected 

( 5 )  A i r  i s  injected in to  the  boundary layer  i n  a direct ion p a r a l l e l  t o  the  
f r e e  stream 

(6) Boundary-layer-air and inject ion-air  mixing i s  rapid, and the  new 
thickened boundary layer  assumes i ts  new equilibrium velocity pro
f i l e  immediately upon air  in jec t ion  

(7) Air in jec t ion  can be accomplished without the  creation of undue 
ex%ernal flow disturbances. 

The s t a r t i ng  point of the  analysis i s  the  well-known relat ionship between 
the  boundary-layer average skin-fr ic t ion coefficient CF and the  boundary-
layer  momentum thickness 0 i n  two-dimensional f l a t -p l a t e  flow expressed by 

For the  case where there  i s  no a i r  injection, the  momentum thickness w i l l  grow 
proportionally approximately as the  four-f i f ths  power of the  distance from the  
p l a t e  leading edge as i l l u s t r a t e d  i n  the  upper par t  of f igure  1. When low-
energy air  in jec t ion  i s  present, the  momentum thickness w i l l  increase abruptly 
at the  point of inject ion and then the  momentum thickness w i l l  resume i t s  nor
m a l  r a t e  of increase as indicated i n  the lower par t  of f igure 1. Because of 
t he  increased boundary-layer thickness, t he  normal r a t e  of increase i s  now 
slower than it i s  without a i r  injection, and the  skin f r i c t i o n  t o  the rear  of 
t he  s lo t  location i s  decreased. 

For t h e  case where the  enthalpy or stagnation temperature of t he  injected 
air i s  equal t o  t h a t  of t he  f r e e  stream, as w i l l  be the  s i tua t ion  where there  
I s  no heat t r ans fe r  and where engine bleed a i r  i s  not used f o r  any purpose other 
than in jec t ion  i n t o  the  boundary layer, there  w i l l  be no change i n  the  r a t i o  of 
surface temperature t o  free-stream temperature behind the  s l o t  involving heat -t ransfer ,  and t h e  method of e s t h a t i n g  t h e  reduction i n  skin f r f c t i o n  becomes 

7 



readi ly  apparent. I n  effect ,  the  r a t e  of momentum thickness increase behind 
the  s l o t  can now be equated t o  that of a boundary layer  of equal thickness dis
placed downstream of the  s l o t  location by a distance ss '  on a f l a t  p l a t e  
whose chord has a l so  been extended by the  distance s s ' .  The increase i n  momen
tum thickness BSstinduced by the  air  inject ion i s  not chargeable t o  skin 
f r i c t ion .  Consequently, t he  skin f r i c t i o n  on the  f la t  p l a t e  with a i r  inject ion 
(lower par t  of f i g .  1)i s  now equivalent t o  the  skin f r i c t i o n  exis t ing on the  
f i c t i t i o u s  extended p l a t e  (upper par t  of f i g .  1)i n  the  regions 2s and s ' t ' .  

I n  equation form, the  increment i n  skin-fr ic t ion reduction resul t ing from 
air  in jec t ion  can be expressed as 

o r  

( 3 )  

where the  increment has been normalized by the  skin f r i c t i o n  existing on the  
f l a t  p l a t e  before injection, and the  sign convention has been adopted i n  which 
a negative increment represents a reduction i n  skin f r i c t i o n  and a posit ive 
increment an increase. With the  a id  of equation (1)it i s  established t h a t  

Substi tution of equation (4)  i n t o  equation ( 3 )  gives, a f t e r  some manipulation, 

For the  case where the  enthalpy or  stagnation temperature of t he  inject ion 
a i r  i s  not ident ica l  t o  t h a t  of t he  f r ee  stream, as w i l l  be t r u e  i n  ins ta l la 
t ions  where the  engine bleed air  i s  first used f o r  engine accessory o r  cabin 
cooling before in jec t ion  in to  the  boundary layer  o r  where spent cabin a i r  i s  
ut i l ized,  there  i s  an additional change i n  skin f r i c t i o n  downstream of the s l o t  
t ha t  cannot be incorporated in to  equation ( 5 )  without some qualifications.  
This is the change i n  skin f r i c t i o n  resul t ing from the  re la t ive  change i n  heat-
t ransfer  potent ia l  i n  t h i s  area.  This additional heat-transfer e f fec t  can be 
approximated by the use of a modified w a l l  temperature ( t o  be discussed i n  a 
l a t e r  section) t h a t  i s  applied t o  the  complete length of t he  f i c t i t i o u s  extended 
plate .  I n  order t o  make the application, it i s  necessary t o  extend or  contract 
the distance from pla te  leading edge t o  s l o t  location I s  by a correction 
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-
distance AZs, so  t h a t  t h e  momentum thickness jus t  ahead of t h e  s l o t  i s  not 
changed by the  addition o r  subtraction of heat energy i n  t h e  new calculations. 

I n  equation form t h e  change i n  skin f r i c t ion  i n  t h e  area of s ' t '  
resul t ing from the  differences i n  injection-air  and free-stream stagnation tem
peratures can be expressed as 

r 1 

%' %'
I-'c + 
c 
ss'b-( 2s  + 

c 
ss ',1CFZt Q Z t  

where the  minus sign is  applied t o  the  increment t o  f i t  within the  previously 
adopted sign convention f o r  posi t ive and negative reduction i n  skin f r i c t ion .  
The barred quant i t ies  denote values computed with the  a i d  of t he  new o r  modified 
w a l l  temperature; those without bars a re  determined f o r  conditions of equal 
stagnation temperatures f o r  injection-air  and free-stream flow. The correction-
distance A2s can be found with the  aid of equation (1)as follows: 

and 

where a l l  t he  quant i t ies  on the  right-hand side of equation (8) are known o r  
a re  calculable. With the  use of equation (4)  and i t s  counterpart f o r  the case 
of the  unequal stagnation temperatures, along with the  u t i l i z a t i o n  of equa
t i o n  ( 7 ) ,  equation (6) i s  converted t o  

C
%t 

Addition of equations ( 5 )  and 

CF2t 
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m s s  

B T  
I n  equation (10) the quantity i s  independent of any external heat-

t r ans fe r  o r  Reynolds number e f fec ts  (as w i l l  be developed subsequently), and 

KFs  it t 
the  two increments - and can be determined i n  combination i n  a 

+ Z t  CFZt 
single s tep by t he  proper management of t he  other per t inent  quant i t ies .  Equa
t i o n  (lo), therefore, can be simplified t o  

where the  bars have been dropped f o r  convenience from a l l  quant i t ies  except 
those on the  right-hand side-of the  equation which must be 

a i d  of the  new or modified w a l l  temperature. The quantity 

TtJe.must be computed f o r  the  proper value of 	- For equal 
T t , m  

t u re s  A$ = 0, and equation (11)reverts  t o  equation ( 5 ) .  

Determination of -
C 

The quantity of prime importance i n  equations ( 5 )  and 

computed with the 
B S S  ' 

C 
, of course, 

stagnation tempera

%8'(11)i s  
c y 

because it i s  related d i rec t ly  t o  the  problems of a i r  inject ion o r  reduction i n  
skin f r i c t ion .  This quantity i s  found by the  use of the  basic  def ini t ion f o r  
t he  boundary-layer momentum thickness i n  two-dimensional compressible flow 

The increase i n  boundary-layer momentum thickness caused by air  inject ion i s  
found by subtracting the  momentum thickness ju s t  ahead of t he  s l o t  from t h a t  
just  behind the  s l o t  a f t e r  inject ion 

With the  use of the theorems of conservation of mass and of momentum, along w i t h  
t h e  use of the  def in i t ion  
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equation (13) converts into 

I n  order t o  find an expression f o r  Ue/% i n  terms of some readily known 
basic quantities, equation (14) i s  solved,f o r  

where 

If the assumption i s  made tha t  the s t a t i c  pressure i n  the s l o t  exi t  i s  equal 
t o  free-stream s t a t i c  pressure ( tha t  is, pe = pm), then the thermal equation 
of s t a t e  indicates 

In  general, Te w i l l  not be known direct ly  but can be found readily from the 
energy equation 

i f  the stagnation temperature Tt,e of the injected a i r  i s  known. For f l ight  

conditions T, w i l l  usually be one of the basic known quantities. Substitution 
of equations (18) and (19) in to  equation (16) gives the equation 

Equation (20) is  a quadratic, and i ts  solution by the usual method yields 

11 


I 




ue- =  
u, 


2 

because only t h e  plus sign f o r  t h e  radical  has any physical meaning. Introduc
t i o n  of equation (21) in to  equation (13)produces t h e  desired equation 

where 

&ssl 
e* = C , = -" 1 

w / c  W 

and where a l l  quant i t ies  on t h e  right-hand s ide of t h e  expression are known 
a re  readily calculable. For wind-tunnel usage the  equation is converted t o  

k2)(l+ r-1e* = m* + 1 [.-
+ 4-"2(F2 

For M, = 0, equations (22) and (24) reduce t o  

Determination of Skin-Friction Coefficients 

o r  

(24) 

The calculations f o r  t h e  reduction i n  skin f r i c t i o n  due t o  air inject ion 
can be accomplished, of course, with t h e  use of any one of t he  theories avail
able f o r  t he  turbulent boundary layer.  Most recent studies have tended t o  favor 
t h e  use of one of t h e  so-called T' or reference temperature methods. (For 
example, see ref. 7.) I n  t h i s  investigation the  T '  method of Sommer and Short 
(ref. 6), u t i l i z ing  Schlichting's simplification of  the K&&n-Schoenherr 
incompressible-flow curve, is  used. 

I n  the  method chosen, t h e  skin-friction coefficient i n  compressible flow 
I s  given by 
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To3 I -2.6
0.46 

T '  
-(logloA + loglORft + loglox) 

where f o r  convenience the  Reynolds number %, has been divided in to  i t s  com
ponents R f t  and x. 

I n  order t o  apply equation (26) t o  equations ( 5 )  and (11), the x i n  equa
t ion  (26) must be replaced by the  proper length. Thus, t o  f ind  CF the  equa

2 t  
t i on  i s  modified t o  

TW -2.6 
t = 0.46 -(loglOA + loglORft + logloc)

T '  

equation (26) i s  converted t oTo f ind C F ~ ~ ,  

- -2.6-
CF2t' = 0.46(?)[ logloA + log10Rft + loglo(c + azs + z)] (28) 

wherein the  e f f ec t s  of -T t  e f 1 can be incorporated by t h e  use of a modified 
T t  ,w 

wall temperature Tw. Thus, with the  aid of equations (4) and (26) an expres-
sion re la t ing  ss '  with O s s '  i s  obtained, which i s  

-2.6 

C C C 
[.oglox + 1oglORft + loglo (2s + azs+ ...,I 

- Before equation (29) can be u t i l i zed ,  methods fo r  establishing the t e r m  
A26 and the f i c t i t i o u s  or  modified w a l l  temperature must be devised.-With the 
help of equations (8) and (26) the  relat ion required t o  determine AZs i s  
found t o  be 

A l s  = 2 s  

-
Unfortunately, equation (30)  cannot be solved for AZs-expl ic i t ly .  The best  
procedure i s  t o  in se r t  a set of a rb i t r a ry  values of A2s i n  t h e  equation and 

I 




leads to 
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The value of the boundary-layer shape parameter H can be determined as a 
function of free-stream Mach number i n  reference 8. 

ss ' Inspection of equation (29) a t  this point reveals tha t  - or  -
' s f  can-
C C-

not be found expl ic i t ly .  A procedure similar t o  t h a t  f o r  finding AZs must be 
adopted. 

Pressure Recovery Factor 

One of the most desirable,  ar_d probably essent ia l ,  features  of an e f f i c i en t  
a i r - inject ion system f o r  an airplane i s  tha t  the desired inject ion-air  mass flows 
and veloci t ies  be at ta ined without the  use of auxi l iary devices other than a 
t h r o t t l e .  Thus, it becomes desirable t o  r e l a t e  the inject ion mass flows and 
ve loc i t ies  t o  the  ram o r  recovery pressure tha t  might be available i n  the engine 
bleed or  spent cabin a i r .  This relationship i s  accomplished by f i r s t  converting 
equation (16) with the a id  of the thermal equation of s t a t e  t o  (pe = pm beingassumed) 

With the use of the energy equation (eq. (l9)), equation (36) i s  reduced t o  

(37) 

u, p t , m  - Ta. 

Substi tution of equation (37j i n  equation (15) results i n  

Inasmuch as pe = p,, it can be established tha t  



and, hence, elimination of temperature r a t i o s  yields  

Equation (40) i s  compatible with equation (24) only f o r  equal values of 8" 
o r  m*. Furthermore, because the r a m  pressure of t he  bleed air must s a t i s fy  
the condition 

as a r e su l t  of the basic  assumptions inherent i n  the  analysis (and pressure of 
the cabin a i r ,  too, f o r  p rac t i ca l  reasons), it i s  possible t o  introduce a 
recovery fac tor  r defined by 

Consequently, equating the  right-hand par t s  of equations (24) and (40) , along 
with the use of equation (41), yields 

which i s  an expression re la t ing  the mass flow parameter m* t o  the recovery 

factor  r. An expression re la t ing  Aess-1 t o  r i s  a l so  possible, but has not 
C 

been derived here because 4 3 s- i s  only a secondary variable.
C 
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Effect of Ducting Pressure Losses 

I n  the actual  application of a bleed a i r  injection system there i s  a strong 
probabili ty tha t  ducting pressure losses  w i l l  be incurred above and beyond those 
encountered i n  the  normal manner of e ject ing engine bleed or  cabin a i r .  These 
ducting pressure losses  w i l l  reduce the veloci ty  (but not m a s s  flow if the  
proper adjustments are made t o  the s l o t  width) and, hence, flow momentum a t  the  
s l o t  e x i t .  The reduced flow momentum represents an increment i n  drag that 
counteracts the  favorable e f f ec t s  of low-energy a i r  inject ion on skin f r i c t ion .  
I n  equation form this increment i n  drag can be expressed as 

where ue i s  the e x i t  veloci ty  without ducting losses  and Ue,d i s  the  ex i t  
veloci ty  with ducting losses  included. With the use of equation (14) the drag 
increment i s  converted t o  

With the use of equations (15), (l7), and ( 2 3 ) ,  equation (44) i s  transformed 
in to  

or ,  the usually more convenient form 

A t  the  same time tha t  ducting pressure losses reduce slot ex i t  ve loc i t ies  

and momentum they w i l l  a l so  have an e f fec t  on ness  I T h i s  e f f ec t  i s  readi ly-. 
C 

included i n  the calculations by using (&+) i n  equations (5) and (11)
d 

instead of -.%sf Thus, i n  the  f i n a l  form, with ducting pressure losses  
C 

included, the overal l  reductions i n  drag (combined ef fec ts  of reductions i n  
skin f r i c t i o n  and losses  i n  e x i t  momentum) can be expressed as (from eq. (11)) 



where the subscript on the  bracket s ign i f i e s  t h a t  a l l  quant i t ies  within the 

brackets a re  t o  be based on r%)d.I f  equation (43) i s  substi tuted i n  equa

t i o n  (47) the  resu l t  i s  

A1 s 2 
C 

where the  quant i t ies  within the  brackets are again based on 

RESULTS AND DISCUSSION 

Incremental Boundary-Layer Momentum Thickness Parameter 

General character is t ics . - Inspection of equation (24) indicates t h a t  the 
incremental boundary-layer momentum thickness parameter 8* i s  solely a func

t ion  of the three variables m*, G, and Q. Consequently, i n  f igures  2 
T t , w  

t o  8 are  presented some typical  p lo ts  of the incremental boundary-layer momentum 
thickness parameter 8* a s  a function of the inject ion-air  mass-flow param

e t e r  m* f o r  various values of M, and 2.T t  e Figures 2 t o  6 a re  intended 
T t  ,w 

primarily t o  show the connection of the two parameters �I* and m* with the 
pressure recovery fac tors  r t ha t  are  required t o  es tab l i sh  these flow charac
t e r i s t i c s  i n  the  absence of any auxi l iary devices such as compressors or flow 
th ro t t l e s .  Figures 7 and 8 were prepared t o  show a clearer  and more comprehen
sive picture  of the general s i tuat ion and t o  s t r e s s  the e f f ec t s  of and 

5. 
T t  ,m 

m
It eResults indicate tha t ,  f o r  A = 1.0 ( f ig s .  2, 3, 4, and 7), 8* i s  0 
*t,m 

when m* i s  0, increases t o  some maximum value, and then decreases t o  zero 
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when m* = 1. The physical interpretat ions are t h a t  there  cannot be any 
increase i n  boundary-layer momentum thickness when there  i s  no a i r  inject ion 
and when the  a i r  is injected a t  stream velocity (m* = 1). From t he  def ini t ion 
of e* in equation ( 2 3 )  

M S S '  
m s s  ' 

e* =e=-W 

it is  apparent that there  i s  a max5" value of boundary-layer momentum thick
ness increase mSsi that can be attained f o r  a par t icu lar  s l o t  width a t  con
s tan t  Mach number. This maximum occurs at  

* For values of m* below those fo r  Omax, the m a s s  flows through the s l o t  a r e  

too low f o r  maximum efficiency, and f o r  values of m* above those f o r  e*m 
the inject ion ve loc i t ies  a r e  too high. 

The e f f ec t s  of increasing Mach number a t  T- = 1 are  t o  decrease 8* 
T t  ,w 

and hence t o  tend t o  lower the efficiency of the low-energy air- inject ion scheme 
over the full range of the mass-flow parameter but with increasing degree a t  the 
higher values of m*. (See f i g .  7.) Consequently, etax occurs a t  lower 
values of m* (a desirable trend) a t  the high values of s. The Mach number 
e f f ec t  of decreasing e* ' i s  a t t r ibu tab le  t o  the f ac t  t h a t  a t  constant m* the 
e x i t  velocity r a t i o  ue/% must be increased t o  compensate f o r  the decreased 
density of the inject ion a i r  a t  the  higher Mach numbers. Much more could be 
said about the general character is t ics  of e&, but i n  subsequent discussions 

the  importance of t h i s  parameter i s  severely downgraded and these additional 
character is t ics  become of l i t t l e  or no prac t ica l  significance. 

Included i n  f igure 7 i s  a curve demarking t h e  zones between subsonic and 
supersonic inject ion o r  e x i t  veloci t ies .  This boundary i s  found by subst i tut ing 
the  recovery fac tor  required f o r  sonfc inject ion velocity 

-Y 



i n t o  equation (42) and by using the resu l t ing  value of (I?+)%=~ i n  
equation (24). 

The boundary f o r  sonic s l o t  ex i t  o r  inject ion veloci ty  ( f i g .  7) indicates 
that as increases subsonic e x i t  ve loc i t ies  w i l l  be achieved a t  progres
s ive ly  lower values of the mass-flow parameter m*. Above a Mach number of 
about 2.2, it i s  impossible t o  a t t a i n  the  maximum theore t ica l  boundary-layer 
thickening 0with subsonic inject ion ve loc i t ies .  

The e f fec ts  of changes i n  the inject ion-air  temperature r a t i o  	 T t  e on e* 
Tt,= 

a t  Ea, = 3 can be deduced from f igures  3 ,  5,  6, and 8. A decrease i n  5 
T t  ,-

causes an increase i n  e*, the  e f f ec t  increasing i n  magnitude as m* increases. 

T t  eIncreases i n  2,on the other hand, which a re  usually more readi ly  a t ta inable  
T t  ,-

than decreases, have reversed effects .  Finally,  decreases i n  2T t  e induce the 
T t  ,= 

l a rges t  improvements in @*at  the highest pressure recovery factors .  (Compare 
f i g s .  3, 5, and 6.) Increases have t h e i r  most detrimental e f fec t  i n  this 
recovery fac tor  range. These trends derive d i r ec t ly  from the f a c t  t ha t  low-
temperature a i r  injected in to  a boundary layer of higher than average tempera
t u r e  at  constant + w i l l  require lower exit-velocity r a t i o s  t o  counterbalance 
the  increased inject ion-air  densi t ies .  

0* a s  a function of ue/%.- I n  the  design of inject ion s lo ts ,  it i s  gen
e r a l l y  desirable t o  know the  ex i t  or  inject ion velocity.  Consequently, f ig 
ures 9 and LO have been prepared t o  i l l u s t r a t e  e* as a function of u e / s  fo r  
t he  same general conditions of Mach number and inject ion-air  temperature r a t i o  
as were shown i n  figures 7 and 8. 

In general, the  same conclusions inferred from f igures  7 and 8 f o r  the Mach 
number and temperature-ratio e f f ec t s  i n  terms of mass-flow r a t i o s  m* are  
derived from figures 9 and 10 f o r  the  e f fec ts  i n  terms of the injection-velocity 

't er a t i o  u e / ~ .  I n  addition, however, f igure 9 displays the  f ac t  that a t  2 = 1 
T t , m  

the  optimum value of e* occurs a t  increasing values of ue/% as contrasted 
with decreasing values of m* ( f i g .  7), as M, increases. T h i s  reversal  i s  
readi ly  explained on the  basis of the increased exit-velocity r a t i o s  required t o  
compensate for the  decreased densi t ies  and which override e f fec ts  of the  dimin
ished mass-flow ra t io s .  
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T t  eA t  constant Mach number ( f ig .  10) a decrease i n  --L increases 8" and 
't ,m 

moves 8-* t o  higher values of ue/%. Conversely, an increase i n  '-
T t  p 

decreases 8" and moves 8 L  t o  lower values of ue/&. These trends a re  i n  

agreement with the  requis i tes  t h a t  a t  constant u e / ~increases i n  exit-flow 
temperature r a t i o s  be counteracted by decreases i n  mass-flow ra t io s .  A s  i s  t o  
be expected from the e f f ec t s  of temperature on the speed of sound, an increase 

i n  T t  e causes sonic e x i t  veloci ty  t o  occur a t  higher values of t he  velocity 
T t  ,m 

r a t i o  k/u,. 

Pressure Recovery Factor 

Up t o  th i s  point the  pressure recovery fac tor  r has been brought i n to  
the  discussion several times but only i n  a general manner. It appears desirable 
a t  t h i s  point t o  examine the ro le  of r i n  somewhat more d e t a i l .  Accordingly, 

r has been presented as a function of the  parameter m * / E  (derived from 

eq. (42)) i n  f igure 11. 

The r e su l t s  of f igure 11 indicate t h a t  r decreases rapidly with a 

decrease i n  the  parameter m" /E2.The r a t e  of decrease i s  la rges t  f o r  the  

highest Maoh numbers. Probably the  most noteworthy feature of t h i s  p lo t  i s  the 
f a c t  t h a t  very low recovery fac tors  must be u t i l i zed  t o  obtain the lower injec
t i o n  mass-flow ra t ios ,  par t icu lar ly  a t  the higher values of %. This trend 
r e su l t s  from t h e  f a c t  that as the pressure d i f f e ren t i a l  between bleed-air  i n l e t  
and e x i t  is  reduced t o  es tabl ish the  smaller mass-flow ra t ios ,  the conversion 
of free-stream kine t ic  energy t o  heat decreases the density of the  ex i t  flow 
and tends t o  increase and thus requires a s t i l l  fur ther  decrease i n  the 
pressure differential .  t o  a t t a i n  t h e  desired m*. T h i s  e f f ec t  increases rapidly 
i n  potency as b& increases owing t o  the  sharp r i s e  i n  stagnation pressures. 

Reductions i n  Skin-Friction Parameter 

The ultimate objective of this  investigation w a s  t o  determine the  possible 

reductions i n  the  skin-friction parameter NF- as a function of the pressure 
cFz t 

recovery fac tor  r. Such an approach insures the compatibility of the  variables 
involved and limits the analysis t o  physical flows at ta inable  without the use 
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of t h r o t t l e s  o r  some type of pump. Results of the theore t ica l  calculations are 

presented i n  two ways. I n  figures 12 t o  18, ACF- i s  presented as a function 
+ Z t  

of r, each one of the s ignif icant  variables being used as a parameter while 

the others a r e  being held constant. I n  f igures  19 t o  25 X F- is  presented as 
Q Z t  

a function of each one of the  variables, the others  being held constant but with 
r always as the  varying parameter. 

The re su l t s  of f igures  12 t o  25 indicate t h a t  the  greatest  reductions i n  
skin f r i c t i o n  a re  obtained always a t  t he  lowest recovery fac tors  and tha t  the 
rate of reduction generally strongly increases as r decreases. This re su l t  
means tha t  the greatest  reductions i n  skin f r i c t i o n  w i l l  be obtained with the* lowest possible inject ion ve loc i t ies  and widest s l o t s  and t h a t  8- i s  not a 
parameter of any great significance. At a supersonic Mach number of 3, fo r  the 
l imited range of parameters studied i n  this investigation, the la rges t  reduction 

i n  !!k that was calculated w a s  on the order of 0.24 (or  24 percent) and this 
%t 

value occurred f o r  a s l o t  located a t  5 percent of t he  chord (”= 0.05), f o r  a 
C 

mass-flow r a t i o  of 0.002 and f o r  a recovery fac tor  of only 0.005 ( f ig .  15). 
For a more reasonable and anticipated bleed-air pressure-recovery range of 0.25 
t o  0.50, the reduction in skin f r i c t i o n  i s  on the order of 10 t o  5 percent 
( f igs .  15 and 22). For an application r e s t r i c t ed  t o  reduction of skin f r i c t i o n  
on an engine nacelle only the mass-flow r a t i o s  can be higher than those inves
t iga ted  herein, and the  theore t ica l  nacelle skin-friction reductions may be 
higher than  those ,quoted previously. 

The e f f ec t s  of increasing Ea, a t  constant r a re  t o  reduce - sharply 
+ Z t  

i n  t he  range of recovery fac tors  that probably w i l l  be encountered i n  ac tua l  
service. (See f i g s .  12 and 19.) T h i s  trend derives from the aforementioned 
f ac t  that conversion of free-stream kine t ic  energy in to  heat i n  the  pressure-
loss  phase of t he  bleed-air flow w i l l  decrease the  density of the  injected air  
and require higher inject ion ve loc i t ies  a t  constant mass flow, which i n  turn  
w i l l  increase the momentum of the injected air  and hence lower the  efficiency 
of this air- inject ion scheme. 

Increasing %, decreases the value of M F- s l igh t ly .  (See f ig s .  13 
+ Z t  

and 20.) It may be noted that the Reynolds numbers were chosen t o  correspond 
t o  those f o r  a wing having an average chord of 35 fee t ,  such as might be of 
i n t e re s t  f o r  a supersonic transport  operating a t  uni t  Reynolds numbers of 0.5,
1.5, 3.0,  and 5.0. 
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Changes i n  inject ion-air  temperature r a t i o  have a powerful e f f ec t  on the 
skin-friction reduction ( f ig s .  14 and 21) and lead t o  consideration of spent 
cabin a i r  (which i s  apt t o  be re la t ive ly  cool) f o r  inject ion i f  suff ic ient  quan
t i t i e s  of such a i r  are available.  The physical bas i s  f o r  the e f f ec t s  of changes 

i n  Tt’e- on the  momentum thickness parameter e*, which i s  the  main variable 
*t,t 

involved i n  producing the  trends, has been discussed previously. 

Ins ta l la t ion  of the inject ion s l o t  as close t o  the leading edge as possible 
i s  important f o r  skin-friction reduction ( f igs .  15 and 22) although such an 
in s t a l l a t ion  may often lead t o  s t ruc tura l  and wave-drag problems which may tend 
t o  counteract the favorable e f fec t  of a i r  inject ion.  

Increasing t h e  chord length has a small favorable e f f ec t  on reduction i n  
skin-friction parameter ( f ig s .  16 and 23), but it should be noted that t h i s  
comparison involves a change i n  inject ion-air  mass flow (even thoughthe m a s s -
flow r a t i o  %/% i s  constant). Increasing the chord a t  constant absolute 

m a s s  flow ( f ig s .  1.7 and 24) generally r e su l t s  i n  large decreases i n  E F- a s  

expected. 

Finally, but most s ignif icant ly ,  decreases i n  the mass-flow r a t i o  
lead t o  substant ia l  decreases i n  the possible reductions i n  skin f r i c t ion .  (See 
f i g s .  18 and 25.) A reduction of %/% t o  0.001 w i l l  provide reductions i n  
skin f r i c t i o n  only on the  order of 6 t o  2 percent f o r  the pressure recovery 
fac tor  range of 0.25 t o  0.50 even fo r  the most forward s l o t  location (data not 
shown) a t  Mach number 3. This mass-flow r a t i o  i s  probably a substant ia l ly  more 
r e a l i s t i c  value of available engine bleed a i r  than the  value of 0.002 used i n  
most of the calculations i f  a i r  inject ion i s  t o  be applied t o  a complete wing. 
On the other hand, i f  a i r  inject ion i s  res t r ic ted  t o  an engine nacelle the 
mass-flow r a t i o s  can be higher than those considered herein, and the reductions 
i n  nacelle skin f r i c t i o n  may be higher than  those quoted f o r  the  largest  values 
of +/m, investigated.  There would be no improvement, however, i n  terms of 
complete airplane drag. 

Effects  of Ducting Pressure Losses 

The e f f ec t s  of ducting pressure losses  on the drag reduction parameter 
acD (where the momentum i n  the engine bleed-air flow a t  the  inject ion s l o t  i s  
CF, * 

LLI 

assumed t o  be f u l l y  recoverable‘) have been calculated f o r  a few specif ic  cases 
and the  results a re  presented i n  f igures  26 t o  32.  I n  these f igures  the dashed 
l i n e  represents the reduction I n  drag tha t  i s  possible without ducting losses  
and the  so l id  l i n e  represents the  reduction i n  drag that i s  obtained w i t h  ducting 
losses.  
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The sol id  l i n e s  i n  these f igures  a re  interpreted as follows: If the  pres
sure recovery fac tor  f o r  a specif ic  set of conditions ( f ig .  30) i s  0.455 and 

the  s l o t  width i s  0.00230, then the value of E D- f o r  no ducting losses  i s  
CF2t 

s l i g h t l y  more than -0.08 . If there  are  ducting pressure 

losses ,  then the same m a s s  flow through the  inject ion s l o t  can be maintained 
only by increasing the  recovery factor  of the  bleed a i r  by t he  amount of the  
pressure losses .  The resul tant  l o s s  i n  momentum i n  the bleed-air  flow counter
a c t s  the favorable e f f ec t s  of the  reductions i n  skin f r i c t i o n  and the overal l  

reduction i n  drag represented by the increment i n  drag parameter i s  
CFZt 

decreased. Thus, a t  r = 0.60 the  ducting pressure losses  a re  found t o  be 

equal t o  an increment i n  r of -0.145 and the value of ED- i s  only about 
CFZt 

-0.015 or  -1.5 percent. If r had been 0.60 and there  were no ducting pressure 

losses,  then &D- would have been about -0.075. The decrease i n  a c ~  from-
%t t 

-0.073 t o  -0.015 at  r = 0.60 represents the  l o s s  i n  overal l  drag reduction 
resul t ing from the introduction of the ducting losses  a t  constant bleed-air 
pressure recovery fac tor .  

Examination of f igures  26 t o  32 indicates  t ha t  ducting pressure losses  
rapidly decrease the effectiveness of the  scheme of reducing turbulent skin 
f r i c t i o n  by low-energy a i r  inject ion.  This i s  par t icu lar ly  t rue  a t  the low 
recovery fac tors  where the effectiveness of a i r  inject ion i s  greatest .  For 

Tte
2= 1.0, ducting pressure recovery losses  Ar of l e s s  than 0.1 w i l l  negate 

Tt,m 

a l l  possible favorable e f f ec t s  of reduction i n  skin f r i c t i o n  i n  the range of r 
near 0.5.  For r near 0.1, the ducting losses  need be l e s s  than 0.03 t o  have 
the  same adverse e f f ec t .  Thus, it appears t h a t  skin-fr ic t ion reduction by low-
energy a i r  inject ion w i l l  be prac t ica l  only where ducting requirements w i l l  be 
minimum, such as on an engine nacelle with the  use of engine bleed a i r  and on a 
fuselage with spent cabin air .  It may even be possible tha t  i n  some such air-
inject ion ins ta l la t ions ,  the in te rna l  ducting losses  suffered i n  e ject ing bleed 
o r  cabin a i r  actual ly  may be reduced and a double dividend obtained. 

Further inspection of f igures  26 t o  32 reveals no s ignif icant  changes i n  
trends due t o  Mach number e f f ec t s  (compare f i g s .  26, 27, and 28), due t o  %, 
e f fec t s  (compare f i g s .  27 and 29), due t o  changes i n  a i r - in jec t ion  temperature 

r a t i o  T t2e (compare f ig s .  27 and w),due t o  s l o t  location (compare f i g s .  27 
Tt,m 
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and 3 l ) ,  or due t o  reductions i n  mass-flow r a t i o  (compare f igs .  27 
and 32). Another f ac to r  t o  note i s  that the  slot-width t o  chord r a t io s  w/c
coupled with the expected range of bypass recovery fac tors  (0.25 t o  0.50) w i l l  
be s m a l l ,  generally l e s s  than 0.004. For the lowest recovery factor  of 0.01 
the  associated slot-chord r a t i o s  a re  on the order of 0 . 0 1 t o  0.02. 

Comparison of Theory With Experiment 

A l imited comparison has been made of the theore t ica l  indications with 
some unpublished air- inject ion results obtained on a semispan wing by means of 
force tests a t  a Mach number of 2 and w i t h  some re su l t s  obtained by momentum 
surveys on a f l a t  p la te  a t  a Mach number of 3 from reference 9. The force data 
appear t o  confirm the general indications of the theory whereas the re su l t s  of 
the  momentum investigation appear t o  be i n  disagreement. More experimental 
information i s  needed, however, before a f i n a l  assessment of agreement of theory 
with experiment i s  ju s t i f i ed .  

SUMMARY OF RESULTS 

An analyt ical  investigation based on a number of simplifying assumptions 
has been made of the poss ib i l i t i e s  of reduction i n  compressible turbulent skin 
f r i c t i o n  on a f la t  p l a t e  by means of low-energy a i r  inject ion through d iscre te  
s lo t s .  The analysis i s  based on the combination of the  momentum losses  i n  the  
boundary-layer and inject ion-air  flows, and employs the Sommer and Short refer
ence temperature method fo r  estimating boundary-layer skin f r i c t ion .  The r e su l t s  
of the analysis indicate  

1. The greatest  theore t ica l  reductions i n  skin f r i c t i o n  occurred a t  t he  
lowest inject ion-alr  pressure recovery fac tors  defined a s  the fract ion of free-
stream dynamic pressure energy s t i l l  preserved i n  the inject ion or  engine bleed 
a i r  a f t e r  entrance losses,  and thus a t  the lowest a i r  inject ion ve loc i t ies .  

2.  For the  optimum se t  of conditions considered i n  the analysis, the  maxi
mum reduction i n  skin f r i c t i o n  at  a Mach number of 3 w a s  about 24 percent at  a 
recovery fac tor  of 0.005. For an anticipated pressur% recovery range of  0.25 
t o  0.50, the calculated reduction i n  skin f r i c t i o n  w i t h  the  remaining conditions 
being held constant w a s  on the  order of 10 t o  5 percent. 

3. In general, increases i n  free-stream Mach number, increases i n  free-
stream Reynolds number per foot ,  in te rna l  heating of t he  bleed a i r ,  and movement 
of the  inject ion s l o t  downstream from the  leading edge led t o  decreases i n  the 
available reductions i n  skin f r i c t ion ;  whereas, i n t e rna l  cooling of the bleed 
air, increases i n  chord length a t  constant inject ion mass flow, and increases 
i n  inject ion-air  mass flow resulted i n  increases i n  the amount of reduction i n  
skin f r i c t i o n  that i s  possible. 

25 




4. Pressure losses  i n  inject ion-air  ducting rapidly negated the favorable 
e f f ec t s  of a i r  inject ion.  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va.,  A u g u s t  4, 1964. 
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Figure 1.-Assumed boundary-layer model for analytical investigation. 
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